In this work, for the first time, researchers utilize living organisms – mushrooms – to generate steam under sunlight. It turns out that the micro- and macrostructures of mushrooms possess all the needed characteristics for a good solar steam-generation device: high solar absorption; efficient water supply and vapor escape; and good thermal management. Interestingly, a mushroom is an unlikely candidate as it typically lives in the shadow, i.e. it doesn’t get to see sunlight that much.
The mushroom maintains its hydrophilicity before and after carbonization because of its components, which include carbohydrates and proteins; the nitrogen functional groups exist even after carbonization.
The scientists attributed mushrooms’ capability of high-efficiency solar steam generation to their unique natural structures, including their umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section.
First, the umbrella-shaped black pileus can absorb a huge amount of solar energy. Second, the hydrophilic fibrous stipe working as efficient water supply path can pump water into the mushroom context by capillary force. Third, the porous context not only acts as a bridge to pump the water further into the top pileus but also provides sufficient vapor channels.
“What’s more” as Zhu points out, “the geometry of mushrooms is naturally

Read more: The hidden talent of mushrooms for solar steam generation…